Jake Dytnerski
Ph.D. candidate
Research
Hong Kong has a seasonally dynamic marine environment. Summer sea surface temperatures can exceed 30°C whereas winter temperatures can drop below 15°C. This range in temperature allows for year-round coral communities, and abundant growth of macroalgae in the winter. For my PhD, I am researching the role of the long-spined sea urchin, Diadema setosum, in the ecosystem, here in Hong Kong. Much work has been done on Diadema antillarum in the Caribbean, and some work has been done on the D. setosum as a bioeroder of coral reefs in the tropics. However, little is known about which marcoalgae these urchins feed on; how they affect the seasonal patterns of macroalgae growth and distribution; if the urchins target living corals here in Hong Kong or just the turf algae that grows on the dead skeletons of the corals. Answering these questions will help understand the food sources of the urchins and how their energy stores vary with the seasonal change in food abundance. I am also interested in the connectivity of the populations of D. setosum across its range, as they can be found from the East coast of Africa to French Polynesia, from Honshu, Japan to NSW, Australia. I want to compare the physiological performance of the urchins from stable tropical environments and highly variable environments to determine if they show extensive physiological plasticity, or if populations have adapted to variable environments. This will allow me to predict how these important grazers will cope with future conditions across their range.
Education
2016: Bachelor of Science, Honours Marine Biology, University of British Columbia, Canada
2013: Arts and Science Diploma: Biology, Langara College, Canada
Awards
-
2015: Dean of Science Scholarship – Biology research grant
-
2013: Betty and Tony Pletcher Memorial Scholarship – For Achievement in Biology
-
2012: Real Estate Foundation Biology Student Bursary – Bursary for Biology students
​
The Future of Aquaculture
Seafood currently provides around three billion people with 15 per cent of their protein needs, but because 90 per cent of global fisheries are overexploited, aquaculture is being used at a rapidly increased rate to supply this protein.
Traditional aquaculture techniques focus on single species and cause environmental damage, so we are working on sustainably developing multi-trophic aquaculture which will increase production, whilst simultaneously decrease the damage to the environment through pollution and the destruction of marine habitats.